

Semester II

	MEDICAL PHYSICS		Category: BSC						
U21PH202		L	Т	Р	J	C			
	(For BME only)	3	0	0	0	3			

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To acquire the basics of atomic physics and non-ionizing radiation
- To inculcate the principles behind senses and radioactive nuclides
- To gain the knowledge of interaction of radiation and its effects in human body

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Interpret the basics of atomic physics and non - ionizing radiation (Understand)

CO2: Classify the types of senses, vision and audition (Understand)

CO3: Utilize the basic concepts of radioactivity and radionuclides in various medical applications (Understand)

CO4: Examine the interaction of radiation with matter and its clinical significance (Understand)

CO5: Identify the radiation exposure, dosage effects and prevention measures (Understand)

CO-PO MAPPING:

POs	PO1	PO2	РО3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1		-		-	-	-	_		-	1		10
CO2	2	1	-		s=	-	-	-	-:	-	-	1		81.81
CO3	3	2	1	-	-	-	-	-	-	-	-	1		
CO4	3	3	2	-	% <u></u>	-	7		-	-	-	1		
CO5	3	2	1	-	-	•		-		-	TIP <u>u</u>	1	17-	
СО	2.6	1.8	0.8	-1	-	•	-	-		-	-	1		
Correlation	levels	S:	1: Slig	ht (Lo	w)	2: Mo	oderat	e (Med	dium)		3: Sub	stantia	I (High)

SYLLABUS:

UNIT I ATOMIC PHYSICS AND NON-IONIZING RADIATION

9

Atomic Physics: Absorption and Emission of light – Spin-orbit coupling – Zeeman effect – Quantum mechanical explanation of Zeeman effect – Anomalous Zeeman effect – Stark effect

Non – ionizing radiation: Non – ionizing electromagnetic radiation: Non – ionizing radiation effects: Low frequency effects and High frequency effects

Dr. S. ANANTH Professor and Head

Department of Physics
Kpr Institute of Engineering and Technology
Coimbatore - 641 407.

UNIT II PHYSICS OF THE SENSES

9

Introduction and objectives – Cutaneous sensation – The chemical senses – Audition – Doppler effect – Vision – Psychophysics (Introduction)

UNIT III PRINCIPLES OF RADIOACTIVE NUCLIDES

9

Radioactive Decay – Spontaneous Emission – Isomeric Transition – Gamma ray emission, alpha, beta, Positron decay – Sources of Radioisotopes: Natural and artificial radioactivity – Radionuclide – Cyclotron and reactor produced Radionuclide – Radionuclide used in Medicine

UNIT IV INTERACTION OF RADIATION WITH MATTER

9

Interaction of charged particles with matter - Specific ionization - Linear energy transfer range, Bremsstrahlung, Annihilation, Interaction of X - ray and gamma radiation with matter - Attenuation of gamma radiation, Interaction of neutron with matter and their clinical significance (Radiation Dosimetry)

UNIT V RADIATION QUANTITIES AND RADIATION EFFECTS

9

Radiation Quantities: Inverse square law – KERMA and absorbed dose – Stopping power – Relationship between the dosimetric quantities – Bragg 's curve – Concept of LD 50

Radiation Effects and Prevention Measures: Stochastic and Non – Stochastic effects – Principles of radiation protection in diagnostic medical exposure – Individual prevention measures

Contact Periods:

Lecture: 45 Periods

Tutorial: - 0 Periods

Practical: - Periods

Project: - Periods

Total: 45 Periods

TEXT BOOKS:

1. Brown B. H., Smallwood R. H., Barber D., Lawford P. V and Hose D. R., "Medical Physics and Biomedical Engineering", 1st edition, CRC Press, 2017

2. Gopal B. Saha., "Physics and Radiobiology of Nuclear Medicine", 4th edition, Springer, 2013.

REFERENCES:

- Meredith W. J. and Massey J. B., "Fundamental Physics of Radiology", Varghese Publishing house, 1992
- 2. Muhammad Magbool- "An Introduction to Medical Physics" 2017 edition, Springer, 2018
- 3. Woodcock J. P., "Ultrasonics Medical Physics Handbook 1", Adam Hilger Ltd, Bristol, 2002
- Attix F H, "Introduction to Radiological Physics and Radiation dosimetry", Viley VCH, Verlog, 2004
- https://nptel.ac.in/courses/115103101

Dr. S. ANANTH Professor and Head

Department of Physics

Kpr Institute of Engineering and Technology

Coimbatore - 641 407.

EVALUATION PATTERN:

	5°					
Assessment I (100 Marks)		Assessme (100 Mar		Total Internal Assessments	End Semester Examinations	
Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Individual Assignment / Seminar / Mini Project / MCQ	Written Test			
40	60	40	60	200	100	
	То	tal	40	60		
				100		

Dr. S. ANANTH

Professor and Head

Department of Physics

Kpr Institute of Engineering and Technology

Coimbatore - 641 407.